《板带轧机动特性检测 第1部分:测试方法》 团体标准编制说明(征求意见稿)

一、任务来源,工作简要过程,主要参加单位和工作组成员等

1. 任务来源

根据钢协〔2025〕80 号文《中国钢铁工业协会关于下达2025年第二批团体标准制修订计划的通知》,由燕山大学负责牵头制定《板带轧机动特性检测 第1部分:测试方法》一项行业标准,计划编号:2025068。

2. 工作简要过程

2025年3月,燕山大学向冶金机电标准化技术委员会提交了制订《板带轧机动特性检测 第 1 部分:测试方法》团体标准的建议,在冶金机电标委化技术委员会的积极推荐下,得到了中国钢铁工业协会的批复,批复文号为钢协〔2025〕80号,要求完成时间:2026年前完成报批。

2025年3月18日在河北秦皇岛召开起草工作组成立大会,确定由燕山大学担任组长单位,牵头成立标准起草工作组,同时确定了标准的内容、范围、组织形式和工作方式等。

2025年4月至2025年7月,标准起草工作组开展项目调研和资料收集工作,广泛收集、 分析国内外相关技术文献和资料,同时对板带轧机动特性检工程应用经验等进行调研、归 纳和总结,这些工作为标准起草打下了坚实的基础。

2025年7月至2025年8月起草完成《板带轧机动特性检测 第1部分:测试方法》行业标准(草案)及其编制说明。

2025年8月15日在河北秦皇岛召开工作会议,对标准草案进行了讨论,并形成下一步修改意见。至2025年9月,完成《板带轧机动特性检测 第1部分:测试方法》(工作组讨论稿)及其编制说明。

2025年9月,初步形成《板带轧机动特性检测 第1部分:测试方法》(征求意见稿) 及编制说明并上报冶金机电标准化技术委员会。

3. 主要参加单位和工作组成员

本标准主要参加单位包括燕山大学、重庆理工大学、太原科技大学、河北工程大学、邯郸钢铁集团有限责任公司、首钢股份公司迁安钢铁公司、中国重型机械研究院股份公司、北京中冶设备研究设计总院有限公司等。

主要起草人:彭艳、邢建康、孙建亮、张阳、张明、陈子刚、东占萃、刘云飞、王瑾、赵向阳、侯新想、周颖等。

所做的工作详见表1所示,主要包括:工作组组长全面主持各项标准起草、会议组织与具体推进工作;工作组副组长协助组长工作,负责标准的修订与审核;主要执笔人负责对《板带轧机动特性检测 第1部分:测试方法》进行总结和归纳,负责本标准的具体起草、编制和修改工作,以及对各方面意见及建议进行归纳和整理;相关同志负责对国内外板带轧机动特性检测的现状与发展情况进行全面调研;相关同志负责国内外相关技术文献和资料的收集、分析及资料查证;相关同志负责板带轧机动特性检测,测试方法的工艺验证、使用技术研究与效果评价;相关同志负责本标准制定的指导与协调工作。

序号	参加单位及人员	具体工作
1	重庆理工大学、燕山大学: 彭艳	工作组组长,全面主持各项标准起草、会议组织与具体推进工作。
2	燕山大学: 邢建康	工作组副组长,协助组长工作,负责标准的起草与修改编写。
3	太原科技大学:张阳 燕山大学:赵向阳、侯新想	主要执笔人,负责对板带轧机动特性检测技术和方法进行总结和归纳,负责本标准的具体起草、编制和修改工作,以及对各方面意见及建议进行归纳和整理。
4	燕山大学: 孙建亮 河北工程大学: 张明	负责对国内外板带轧机动特性检测技术的现状 与发展情况进行全面调研。
5	中国重型机械研究院股份公司: 刘云飞	负责国内外相关技术文献和资料的收集、分析 及资料查证。
6	邯郸钢铁集团有限责任公司:陈子刚 首钢股份公司迁安钢铁公司:东占萃	负责板带轧机动特性检测技术的质量检验、使 用技术研究与效果评。
7	重庆理工大学:王瑾	负责内容勘误和技术支持。
8	北京中冶设备研究设计总院有限公司:周 颖	组织协调

表 1 主要参加单位和工作组成员及其所做的工作

二、标准化对象简要情况及制修订标准的原则

1. 标准化对象简要情况

板带轧机动特性检测是钢铁企业轧制过程质量控制的核心技术环节,主要用于评估轧

机在高速轧制工况下的动态响应性能(包括振动特性、传动系统稳定性、辊系动态刚度等), 直接关系到带钢板形精度、表面质量及设备使用寿命。随着轧机高速化、高精度化的发展 趋势,其动特性参数已成为制约生产效率提升的关键因素。

目前,板带轧机动特性检测的技术手段在不断发展,但由于缺乏统一的标准和规范, 检测方法的准确性和一致性存在差异,导致测试结果的可比性和可靠性受到影响。在实际 应用中,一些钢厂因缺乏有效的标准和技术指导,往往对新技术的应用持保守态度,制约 了技术的推广和行业的进步

为了解决这一问题,制定《板带轧机动特性检测 第1部分:测试方法》团体标准具有重要意义。通过对现有技术和方法的总结归纳,本标准将提供统一的检测方法和操作规范,保障测试过程的科学性和准确性,推动技术的持续创新和优化。同时,该标准的出台将有助于提高行业的技术水平,优化生产流程,提升生产效率,推动绿色制造和低碳发展。

因此,制定这一标准不仅能满足轧钢行业对高精度、高效率检测的需求,还能为行业的持续发展提供有力支撑,促进技术进步和环保节能目标的实现。

2. 产品主要用途及性能情况

板带轧机动特性检测是通过一系列专业化的测试技术手段,对板带轧机在运行过程中的动特性进行全面评估。这些测试方法包括振动测试、工艺分析、辊系监测等,通过这些手段可以分析轧机在不同工况下的运行状态,确保其性能达到最佳水平。

检测结果的评估一般以轧机的实际运行性能为依据,通过要求的检测方法和规定测试项目、测试条件、数据处理方法以及检测精度等,以轧制稳定性、生产效率、振动表现等指标作为检测效果的评定标准。

通过精确的动特性测试,可以及时发现轧机在运行过程中可能出现的隐患或异常,确保生产线的顺畅运转。测试结果不仅帮助生产线的日常维护,还能为设备的升级、优化以及技术改进提供数据支持,最终提升生产效率和产品质量。

3. 标准制定的原则

- (1) 规范性要素的规定、 编写结构及格式按照GB/T 1.1-2020《标准化工作导则 第1部分:标准化文件的结构和起草规则》编制。
 - (2) 本标准以制定方式进行起草。

(3)本标准的制定主要参考了表2所列的标准或文件,并结合国内钢铁企业板带轧机 动特性检测的实际应用情况及验证试验结果进行编写,以保证本标准技术指标的先进性、 实用性和经济性。

表 2 参考的相关标准

序号	标准代号	标准名称
1	GB/T 33223-2016	轧制设备 术语
2	GB 50386-2016	轧机机械设备工程安装验收规范
3	GB/T 2298-2010	机械振动、冲击与状态监测词汇
4	GB/T 41850-2022	机械振动 机器振动的测量和评价
5	GB/T 6075-2011	机械振动 在非旋转部件上测量评价机器的机械振动
6	GB/T 6404-2005	齿轮装置的验收规范
7	GB/T 13992-2010	金属粘贴式电阻应变计

三、标准主要内容确定依据

燕山大学与邯郸钢铁集团有限责任公司、首钢股份公司迁安钢铁公司等紧密合作,先后开展了《2250mm 热轧产线装备-产品质量提升关键技术开发》、《二热轧精轧机振动研究》等轧机振动测试与故障诊断科技项目,对轧机系统振动机理与动特性响应进行攻关研究、现场验证与推广应用。

案例一: 邯钢公司 2250mm 热轧产线装备-产品质量提升关键技术开发

表 3 轧机振动测试项目明细

	受载方向	测试方向	传感器类型	采样率
工作辊轴承座 (操作侧)	水平方向	轧机水平方向	加速度传感器	2000 Hz
支承辊轴承座 (传动侧)	垂直方向	轧机垂直、水平 方向	加速度传感器	2000 Hz
液压缸 (传动侧)	垂直方向	轧机垂直方向	加速度传感器	2000 Hz
机架 (传动侧)	垂直方向	轧机垂直方向	加速度传感器	2000 Hz

齿轮箱	传动周向	轧机水平方向	加速度传感器	2000 Hz
联接轴	传动周向	轧机传动周向	应变计	1000 Hz

轧机振动测试结果如图 1~图 6 所示。

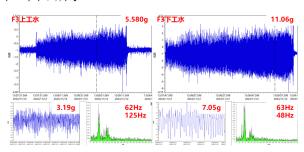


图 1 工作辊轴承座振动信号

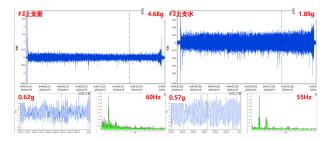


图 2 支承辊轴承座振动信号

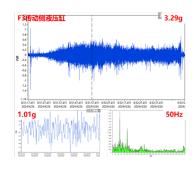


图 3 液压缸振动信号

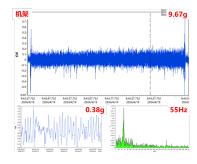


图 4 机架振动信号

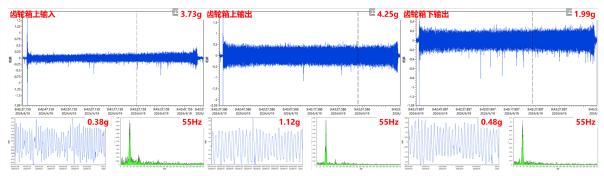


图 5 齿轮箱振动信号

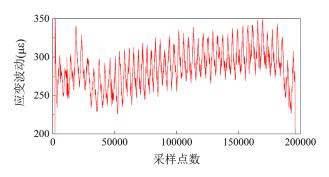


图 6 联接轴振动信号

上述振动测试方法在现场使用效果良好,能适应频繁更换工作辊与支承辊实际要求。

案例二: 首钢股份 二热轧精轧机振动研究

表 4 轧机振动测试项目明细

	受载方向	测试方向	传感器类型	采样率
工作辊轴承座(操作侧、传动侧)	水平方向	轧机垂直、水平 和轴向	加速度传感器	2000 Hz
支承辊轴承座 (传动侧)	垂直方向	轧机垂直、水平 方向	加速度传感器	2000 Hz
液压缸 (传动侧)	垂直方向	轧机垂直方向	加速度传感器	2000 Hz
机架 (传动侧)	垂直方向	轧机垂直方向	加速度传感器	2000 Hz
分速箱	传动周向	轧机传动方向 和轧机垂直、水 平方向	加速度传感器	2000 Hz

轧机振动测试结果如图 7~图 11 所示。

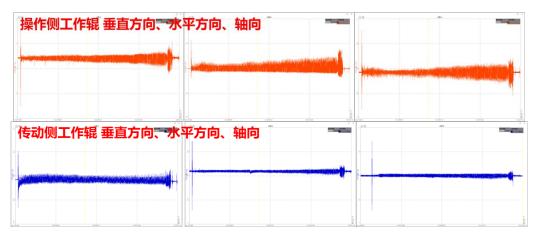


图 7 工作辊轴承座振动信号

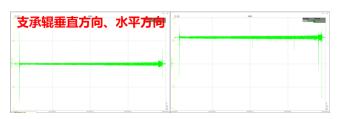


图 8 支承辊轴承座振动信号

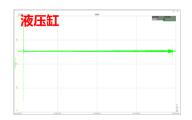


图 9 液压缸振动信号

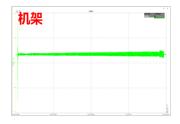


图 10 机架振动信号

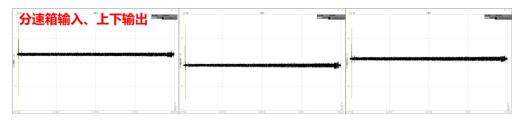


图 11 分速箱振动信号

基于上述科研项目的试验开发总结,形成了轧机振动测试的技术规范。根据本标准规 定的各项技术参数及流程进行推广应用,实现了轧机装备的振动状态监测,并基于后续信 号分析实现故障诊断,得到现场应用单位的高度认可。现场应用结果证明标准指标先进, 方法科学,具有良好的可操作性,能够很好地满足生产实践的要求,并具备显著的推广应用价值。

为便于读者阅读,按本标准文本条款号逐一说明主要条款的编制内容。

1. 范围

本文件规定了GB/T 33223-2016中轧机装备旋转和非旋转部件表面上的振动测试方法。 本部分涵盖轧机装备旋转和非旋转部件的机械振动测试,包括但不限于机架、液压压 下缸、辊系轴承座表面和传动联接轴的测试。

本部分的振动测试准则适用于额定工作转速工况下轧机振动特性测试过程。

2. 规范性引用文件

本标准规范性引用文件主要引用实施本标准所涉及的轧制装备与机械振动测试的术语、轧机产线验收标准以及传感器安装标准等通用要求及标识等国家标准或行业标准。

3. 术语和定义

本标准采用《GB/T 33223-2016 轧制设备 术语》、《GB/T 2298-2010 机械振动、冲击与状态监测词汇》确定轧机振动测试术语,并对新增的轧机振动测试术语作了说明。

4. 轧机的安装与工况要求

对被测轧机的安装与工况提出了要求。

5. 传感器和测试仪器

对本标准使用的测试仪器、传感器的类型与参数提出了要求。

6. 测试点位

对轧机被测位置测试方向与测试点位提出了要求。

7. 测试记录和实验报告

开展振动测试前制定并填写测试报告用于后续分析。

四、国外相关法律、法规和标准情况的说明(对强制性而言)

本标准是首次制定,目前尚无对应的国家标准和行业标准。

与其他相近标准的对比情况:经资料查阅,行业标准《GB/T 13364—2008 往复泵机械振动测试方法》与本团标有所关联。该标准内容适用该标准主要针对往复泵整机振动特性的测试与评价的内容。并未涵盖板带轧机这类大型连续运转装备所特有的动态特性参数(如固有频率、模态振型、阻尼比等)的测试方法,本次制定的团体标准聚焦于板带轧机

关键机构的动态特性测试,在测试对象、频率范围、参数体系及分析方法等方面与 GB/T 13364 存在显著差异,因此有必要制定本标准以规范该专业技术领域。

五、与有关现行的方针、政策、法律、法规和强制性标准的关系,以及知识产权的问题

本标准符合现行的方针、政策、法律、法规和强制性标准,与其他相关标准相协调。 本标准属于我国自主研发制定,将填补板带轧机动特性检测中测试方法技术规范的空白, 对板带轧机在运行过程中的动特性进行全面评估,促进行业规范、健康、快速发展,推动 轧钢行业绿色制造技术的不断进步。

在标准制定过程中未检索到同类国际、国外标准以及相关专利,不涉及知识产权问题。 经与国内外钢厂同行交流,也未有普遍开展板带轧机动特性检测的应用案例。

六、 对征求意见及重大分岐意见的处理经过和依据。

无。

七、 对该标准作为强制性标准或推荐性标准的建议,若是强制(条文)性标准应说明强制的理由

建议作为推荐性行业标准。无强制性条款。

八、 标准水平建议, 预期的社会经济效果

板带轧机是钢铁生产的核心装备,其动特性直接影响产线运行稳定性、产品质量与生产效率,对动特性进行精确检测是保障设备高效可靠运行的关键前提。

由于目前国内外尚缺乏针对板带轧机动特性检测的统一测试方法标准,缺乏规范化的技术指导与评价依据。因此,通过《板带轧机动特性检测 第 1 部分:测试方法》的制定与实施,系统规范了检测流程与分析方法,显著提升了轧机动态性能的诊断精度与可靠性,为设备状态评估、故障预防与工艺优化提供了科学依据,从而满足钢铁企业高效、稳定和高质量生产的迫切需求,并可创造显著的经济效益,如预期在典型产线应用中可实现因减少停机、提升成材率等带来的年经济效益超千万元。同时,有利于推动行业检测技术的标准化与规范化,促进轧制装备智能化升级和绿色高效发展,对提升我国重大装备制造技术水平具有重要意义。

本标准水平建议: 国际先进。

九、 贯彻标准的要求和措施建议(包括组织措施、技术措施、过渡办法等内容),根据国家经济、技术政策需要和该标准涉及的产品的技术改造难度等因素提出标准实施日期的建议

本标准规定的板带轧机动特性测试方法等内容,在目前企业现有装备制造水平和检测水平下可满足本标准实施条件,建议本标准实施日期:标准发布后尽快实施。

十、 废止有关标准的建议

本标准不涉及需要废止的相关标准。

十一、 重大内容的解释和其它应予说明的事项

无。

《板带轧机动特性检测 第1部分:测试方法》 标准起草工作组 2025年9月